digits = datasets.load_digits()
n_samples = len(digits.images)
data = digits.images.reshape((n_samples, -1))
# Split data into 50% train and 50% test subsets
X_train, X_test, y_train, y_test = train_test_split(
data, digits.target, test_size=0.5, shuffle=False
)
model = MLPClassifier(solver='adam',
activation='relu',
hidden_layer_sizes=(5,3),
random_state=4,
max_iter = 600,
learning_rate_init = 0.0013,
batch_size = 32)
history = model.fit(X_train, y_train)
# Predict the value of the digit on the test subset
predicted = model.predict(X_test)
disp = metrics.ConfusionMatrixDisplay.from_predictions(y_test, predicted)
accu = metrics.accuracy_score(y_test, predicted)
disp.figure_.suptitle("Confusion Matrix")
print(f"Confusion matrix:\n{disp.confusion_matrix}")
print('Overall Acuracy:{:.3}'.format(accu))
#sns.set(font_scale = 1)
_, axes = plt.subplots(nrows=1, ncols=20, figsize=(20, 3))
for ax, image, prediction in zip(axes, X_test, predicted):
ax.set_axis_off()
image = image.reshape(8, 8)
ax.imshow(image, cmap=plt.cm.gray_r, interpolation="nearest")
ax.set_title(f"Pred.: {prediction}")